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Equivalence of Constrained Models
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We study two constrained scalar models. While there seems to be equivalence
when the partially integrated Feynman path integral is expanded graphically, the
dynamical behaviors of the two models are different when quantization is done
using Dirac constraint analysis.

1. INTRODUCTION

There are many models in the literature which claim that they are

equivalent to quantum chromodynamics (QCD) in some sense. We can cite

recent work by Hasenfratz and Hasenfratz(1) or the work of Akdeniz et al.(2)

among many papers concerning this topic. We mention these two papers

since in these papers the starting Lagrangians look very different, although

the effective Lagrangians obtained after some manipulations are made are

exactly the same. There are many other papers in the same spirit. One example

is ref. 3, which, in some sense, gave rise to ref. 1. Another example is ref.

4, which was actually a pioneering paper in this endeavor of finding models
whose effective Lagrangian looks like the standard model.

It was always a puzzle to us how similar manipulations made on very

different looking Lagrange functions resulted in completely the same effective

Lagrangian. In this note we try to investigate this phenomenon using scalar

models. We think that our results in the scalar case may give additional
information on this phenomenon.

We will use two constrained scalar models. In ref. 1, the authors imposed

the constraint J f
m 5 C i g m t a c 5 0 on the fields of the free spinor Lagrangian.

For this model to be resembled here we first study the case where we write

a Lagrangian which is essentially equivalent to L 5 1±2 - m f - m f . We will impose

a different constraint, though, since a constraint f - m f 5 0 results in a truly

1 Physics Department, Faculty of Science and Letters, I.T.U., 80626 Maslak, Istanbul, Turkey.

1429

0020-7748/99/0500-142 9$16.00/0 q 1999 Plenum Publishing Corporation



1430 HortacË su and UÈ lker

trivial model. We can also introduce inner symmetry to the theory and make

an O(N ) model along similar lines. For the time being we do not pursue this.

The authors in ref. 2 impose the condition that their current J f
m equals

the product of vector fields instead of zero, J f
m 5 A m A2, which differs from

the constraint used in ref. 1. This complicates the problem, but all of the

additional fields introduced to the model decouple and at the end only one

vector field survives. The propagator for this field, and only for this field is

generated in the one-loop calculation. At this point the resulting effective

theory looks exactly like that of ref. 1.
We have doubts whether these two models are actually equivalent to

QCD in all aspects. One may refer to an old work of Wilson(5) and to a more

recent work of Zinn-Justin,(6) and using the calculations made in ref. 7, claim

that these two models are actually examples of trivial models.(8)

We will not dwell on these points here. We will only investigate in what

sense two models are equivalent when the effective Lagrangians derived from
them seem so. In the next section we present two constrained scalar models.

We get a theory which is totally trivial if we impose the current made out

of scalar fields equal to zero, the analogous case as given in Ref. 1. We

instead use two models where the current is equal to one and two auxiliary

fields, thus introducing 8 and 16 new degrees of freedom, respectively, plus
constraints that will eliminate these. We study the Dirac bracket relations

satisfied by the respective fields. We see that the new introduced vector fields

via the constraint equations somehow replace the canonical momentum of

the scalar field.

In Section 3 we derive effective Lagrangians for these two cases and

show why do they seem to be equivalent on this level. We end with some
remarks.

2. QUANTIZATION OF THE MODELS USING DIRAC
CONSTRAINT ANALYSIS

2.1. We start with

LA 5 1±2 - m f - m f 1 ig l m f - m f 1 1±2 g2 f 2 l 2 (1)

We are in four-dimensional Minkowski space and m takes the values zero to

three. Here l m is an auxiliary field with no kinetic term. g is a coupling
constant.

The equations of motion are

- m - m f 1 ig - m ( l m f ) 5 ig l m - m f 1 g2 l 2 f (2)

ig f - m f 5 2 g2 l m f 2 (3)

which can be shown to be equivalent to
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- m - m f 5 0 (4)

In this calculation we use the methods given in Dirac’ s book. (9) The
canonical momenta are

p f 5 ( - 0 1 ig l 0) f (5a)

and

p l m 5 0 (5b)

which gives us four primary constraints.

The canonical Hamiltonian is

H 5 1±2 ( p f 2 ig l 0 f )2 1 ig l i f - i f 1 1±2 - i f - i f 2 1±2 g2 l 2 f 2 (6)

We get secondary constraints when we set the Poisson bracket of H with
p l m equal to zero,

K m 5
d

dt
p l m 5 (ig f p f 1 g2 l 0 f 2)g0 m 2 ig f - i f gi m 1 g2 l m f 2 5 0 (7)

We take

HE 5 H 1 c m p l m (8)

and further calculate

d

dt
K m 5 [HE , K m ] (9)

where square brackets mean Poisson brackets. Note that l 0 appears in K0,
and the l i in Ki. We get one equation with c0 when [HE , K0] is calculated,

which fixes the value of c0 and does not give additional constraints on

the system. [HE , Ki] give us equations which fix ci. We do not get any

additional constraints.

We can calculate the Poisson brackets between the different constraints,

[ p l 0, K0] 5 2g2 f 2g00, [ f l i, Kj] 5 2 g2 f 2gij

[K0, Ki] 5 g2 f - i f 2 2ig3 l i f 2

All the other brackets of the constraints with each other are zero. We see

that all these brackets are second class. We calculate Dirac brackets between

different fields,

[ f (x), l 0( y)]D 5
i

2g f
d 3(x 2 y) (10a)

[ f (x), l i] 5 0 (10b)

which shows that l 0 is like p f , and l i decouples. We can set l i equal to zero.



1432 HortacË su and UÈ lker

2.2. We propose another model where

LB 5 1±2 - m f - m f 1 ig( l m 1 A m ) f - m f 2 gA m l m A2 (11)

The primary constraints are

p A m 5 0 (12)

p l m 5 0 (13)

The Hamiltonian reads

H 5 1±2 ( p f 2 ig( l 0 1 A0) f )2 1 1±2 - i f - i f 1 ig( l i 1 Ai) f - i f (14)

1 g l m A m A2

where

p f 5 - 0 f 1 ig( l 0 1 A0) f (15)

HE 5 H 1 c
m
1 p A m 1 c

m
2 p l m (16)

Secondary constraints

[HE , p A m ] 5 Q1
m 5 0 (17)

[HE , p l m ] 5 Q2
m 5 0 (18)

are given as

Q1
m 5 ig f ( p f 2 ig( l 0 1 A0) f )g m 0 2 ig f - i f gi m

2 g l m A2 2 2g l n A n A m (19)

Q2
m 5 ig f ( p f 2 ig( l 0 1 A0) f )g m 0 2 ig f - i f gi m 2 gA m A2 (20)

We see that the system is closed, since the Poisson brackets of Q1
m , Q2

m with

HE involve eight coupled equations for c1
m and c2

m . We get no further constraints.
When we calculate the Poisson brackets of the constraints with each

other, we see that they are all of second class. We have 16 second-class

constraints and 18 degrees of freedom. We have traded some of our fields

in terms of others, but we did not change the number of independent variables.

Now we can calculate the Dirac brackets between different fields. We
are particularly interested in the brackets between f and A m , l m , since the

Poisson brackets between the same fields are zero. The effect of the constraints

in the system are reflected in the Dirac brackets; hence, they do not vanish

when they are taken between f and the auxiliary fields. We give below the

result of some sample calculations:
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[ f (x), A1( y)]D f ( y)

5
i f 2( 2 2A0 A1)[g f 2(A2 2 2A2) 2 3A4]

D
d (3)(x 2 y) (21a)

[ f (x), A0( y)]D f ( y)

5
i f 2(A2 2 2A2)[g f 2(A2 2 2A2) 2 3A4]

D
d (3)(x 2 y) (21b)

[ f (x), l 0( y)]D f ( y)

5
i f 2(A2 2 2A2)[2g f 2(A2 2 2A2) 2 3A4 2 4A2 l m A m ]

D
d (3)(x 2 y) (21c)

[ f (x), l 2( y)]D f ( y)

5 2i
f 2[ 2 3A0 A2(A

4 2 4A2A m l m ) 2 3A4(A0 l 2 1 A2 l 0)]

D
d (3)(x 2 y) (21d)

where

D 5 [g2 f 4(A2 2 2A2)2 2 (6A2 1 4 l m A m )(A2 2 2A2)A2g f 2 1 9A8] (22)

Here A2 means the three-vector A squared.

Upon quantization we see that A m and l m seem to contain part of p f .

We expect only p f to have nonzero commutation relations with f and in

this model both A m and l m also will have nonzero commutations with f . The
constraints Q1

m 5 0 and Q2
m 5 0 relate p f to these fields.

The model we have studied seems to be considerably different from the

one studied in the first section. The fields in the model have nonzero Dirac

brackets, so we cannot set them equal to zero, as in the previous model. The

space components of the vector fields do not decouple and cannot be set

to zero.
Note that in both of these models the degrees of freedom is two. In

model A we start with 10 degrees of freedom, 2 for the f and 8 for the l
field and their respective momenta. Eight constraints reduce these to 2. In

model B we start with 18 degrees of freedom since we have two vector

particles. Sixteen constraint equations reduce this number to 2. As far as the

equations of motion are considered, these two models do not seem to be alike.

3. FEYNMAN RULES USING THE PATH INTEGRAL

Here we study the two models using Feynman diagram expansions of

the path integral after the integral is partially integrated. We start by studying

model A, then contrast our results with that of model B.



1434 HortacË su and UÈ lker

3.1. Here the path integral is written as

Z 5 # d f d p f d l m d p l m d ( p l m ) d (K m ) det M m n exp iS (23)

where

M m n 5
- K m

- l n
(24a)

S 5 # d 4x[ p f - 0 f 1 p l m - 0 l m 2 HE] (24b)

We write the Dirac delta functions in the integral form, introducing new

variables A m , and express the determinant in the exponential form using
ghost fields:

d (K m ) 5
1

2 p # dA m e 2 iA m K m

det M m n 5 # dc 1
m dc n eic 1

m M m n c n

The integrations over the momenta and f are performed easily and we end

up with

Z 5 N # dA m d l n dc 1
a dc b

3 exp{ 2 1±2 tr log [ 2 - m - m 1 igN m - m 2 ig - m N m 1 g2 (1±2 l 2 2 A m l m

2 1±2 A2
0 1 c 1

0 c0 1 c 1
m c m )]} (25)

where we define N m 5 l m 2 A m . We can calculate the inverse propagator

D 2 1
m n for the N m field by taking two derivatives of Eq. (25) with respect to

the N m field. In the momentum representation we get

D 2 1
m n (q) 5 2 g2 # d 4p

(2 p )4

( p m 1 q m )( p n 1 2q n )

p2( p 1 q)2

5 2 g2 G ( e )

6(4 p )2 (g m n q2 2 10q m q n ) (26)

which looks like the massless vector boson propagator, at least in a particular

gauge. Note that all the components of the vector field have nonzero

propagation.
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All other fields have zero propagators if we use dimensional regulariza-

tion. Here we set * d 4p(1/p2) 5 0. When we drop all the fields with zero

propagators we end up with

Seff 5 2 1±2 Tr log( 2 - 2 1 igN m - m 2 ig - m N m ) (27)

Upon expanding the logarithm we can evaluate the multipoint functions for

the N m fields. Equation (26) dictates a necessary condition on the coupling

constant g, though, to have a well-defined expression for the propagator

function given by this equation, which reads

g2 G ( e )

6(4 p )2 5 1 (28)

This condition makes the model asymptotically free in the ultraviolet regime.

By taking all the nonvanishing terms we see that for the composite field

l m the effective Lagrangian can be written as

Leff 5 1±2 - m N n - m N n 1 - m N n - n N m 1 gf m n r N m N n N r (29)

1 g2V m n r s N m N n N r N s

Here f m n r is proportional to momentum and Kronecker deltas and V m n r s is
made out of Kronecker deltas. Higher order functions, starting with the fifth-

point function, drop with higher powers of g. For example, the five-point

function goes as g5. They do not fit into this scheme of the effective Lagrangian

and are calculated as loop corrections.

Here we calculated the Feynman rules for this model and showed that
apart from the restriction dictated by Eq. (28), we get rules similar to those

of a gauge theory. One can calculate physical processes using these rules

and get free parton model results, as is the case in a similar model,(7) due to

the restriction dictated by Eq. (28). All the physical processes that involve

interactions will involve powers of the coupling constant, which goes to zero.

Any possible divergences due to loops will be canceled by the zeroes coming
from extra powers of the coupling constant. Only terms which do not involve

any interactions are finite. These terms are the same as those given in the

free-field case.

3.2. The path integral for model B in the Hamiltonian formalism is

written as

# dA m d p A m d p l m d l m d f d p f d ( p l m ) d ( p A m ) d (Q1
n ) d (Q2

n )(det M ) exp iS (30)

Here
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S 5 # d 4x [ p f - 0 f 1 p A m - 0 A m 1 p l m - 0 l m 2
1

2
[ p f 1 ig( l 0 1 A0) f ]2

2
1

2
- i f - i f 2 ig( l i 1 Ai) f - i f 2 g l m A m A2] (31)

Q1
m 5 f ( p f 2 ( l 0 1 A 0) f )g m 0 2 f - i f gi m 2 l m A2 2 2 l n A

n A m (32)

Q2
m 5 f ( p f 2 ( l 0 1 A0) f )g m 0 2 f - i f gi m 2 A m A2 (33)

M is an eight by eight matrix whose entities are made out of derivatives of

Q1
m and Q2

m with respect to the fields A m and l m .

We can use the integral representation of the Dirac delta functions,

d (Q1
m ) 5

1

2 p # dB m exp( 2 iB m Q 1
m ) (34)

d (Q2
m ) 5

1

2 p # dE m exp( 2 iE m Q2
m ) (35)

Using ghost, i.e., Grassmann-valued, fields c m , e m , c ²
m , e ²

m , we can raise det

M to the exponential,

det M 5 # dc ²
m dc n de ²

s de r exp(iN ) (36)

where

N 5 (c ²
m 1 e ²

m )(g2 f 2g m 0g n 0)(c n 1 e n )

1 c ²
m ( 2 2gA m l n 2 2gg m n l k A k 2 2g l m A n 2 2g l n A m )c n

1 c ²
m ( 2 g m n A2 2 2gA m A n )e n 1 e ²

m ( 2 gg m n A2 2 2gA m A n )c n (37)

When the momentum integrals are performed we get

Leff 5 i F 1

2
- m f - m f 1 igG m f - m f 2

g2

2
(B0 1 E0)

2 f 2 2 g l m A m A2 1 gB m l m A2

1 2gB m A m l n A n 1 gE m A m A2 1 g2f ²
0 f 2f0 1 c ²

m ( 2 gg m n A2 2 2gA m A n )f n

1 f ²
m ( 2 gg m n A2 2 2gA m A n )e n

1 c ²
m [2gA2g m n 2 2g l m A n 2 2gg m n l k A k 2 2gA m l n 1 4gA m A n ]c n (38)

Here f m 5 c m 1 e m . We set G m 5 A m 1 l m 2 B m 2 E m .

We perform the integration over f and obtain
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Seff 5 2
1

2
Tr log F 2 - 2 1 igG m - m 2 ig - m G 2

g2

2
(B0 1 E0)

2 1 g2f ²
0 f0 G

1 # d 4x[ 2 g l m A m A2 1 gB m l m A2 1 2g l m A m A n B n 1 gE m A m A2

1 e ²
m ( 2 gA2g m n 2 2gA m A n )f n

1 f ²
m ( 2 gA2g m n 2 2gA m A n )e n 1 c ²

m (2gA2g m n

1 4gA m A n 2 2g l m A n 2 2g l n A m 2 2g l r A
r g m n )c n ] (39)

Note that only G m propagates among all the fields given above. To find

the propagator, we take two derivatives with respect to the respective fields,

- 2Seff

- G m (x) - G n ( y) Z 0 5
2 1

(2 p )4 g2 # d 4p
( p m 1 q m )( p n 1 2q n )

p2( p 1 q)2 (40)

Subscript zero on the derivative means that all the fields are put to zero after

the differentiation is performed.
Note that this is the same expression for the propagator of the l m field

as given in Eq. (26). We also see that

- 2Seff

- B2
0

5
- 2Seff

- E 2
0

5
- 2Seff

- g ²
0 - g0

5
1

(2 p )4 # d 4p

p2 (41)

This expression is zero by dimensional regularization. All the other fields
also have zero propagators since the effective Lagrangian does not have any

terms which are only bilinear in these fields. All these terms involve quartic

interactions of these fields. When we drop all the fields with zero propagators

we end up with

S9eff 5 2 1±2 Tr log( 2 - 2 2 igG m - m 1 ig - m G m ) (42)

This is the same expression we found for model A. Therefore all the results

obtained for model A from this expression are also true for model B. We

can not differentiate model A from model B as far as perturbative expansion

in terms of Feynman diagrams is concerned.

4. CONCLUSION

Here we have studied two very dissimilar models which have the same

Feynman expansions. A complete constrained Hamiltonian analysis shows

that the two models are different. One reason we have studied this problem

is to be able to clarify the behavior of many Nambu±Jona-Lasinio-like(10,3)
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models which are claimed to be similar to QCD.(11) Some workers (12) disagree

with equivalence. The claim in ref. 12 is that after an investigation of a

lattice Nambu±Jona-Lasinio model both by the Monte Carlo method and
Schwinger±Dyson equations, studying renormalization group flows in the

neighborhood of the critical coupling where the chiral symmetry-breaking

phase transition takes place reveals no region of the bare parameter space

renormalizability of the model. We propose that, in addition to the standard

methods of looking at the renormalization flow and fixed-point structure of

two models to show equivalence, their constrained analysis may be another
check. Still another method is to study the predictions of these models for

different physical processes. Some older work(5,7) seems to suggest that the

Nambu±Jona-Lasinio-type models may indeed be trivial for four-dimensional

space-time, perhaps like the f 4 model.

ACKNOWLEDGMENTS

We are grateful to Prof. OÈ mer Faruk Dayi for many very enlightening

discussions. This work was partially supported by TUÈ BITAK, the Scientific

and Technical Research Council of Turkey. The work of M.H. was also

supported by the Turkish Academy of Sciences.

REFERENCES

1. A. Hasenfratz and P. Hasenfratz, Phys. Lett. 297B , 166 (1992).

2. K. G. Akdeniz, M. Arik, M. HortacË su, and N. K. Pak, Phys. Lett. 124B , 79 (1983).

3. A. Hasenfratz, P. Hasenfratz, K. Jansen, J. Kuti, and Y. Shen, Nucl. Phys. B 365 (1991).

4. D. Amati, R. Barbieri, A. C. Davis, and G. Veneziano, Phys. Lett. 102B , 408 (1981).

5. K. G. Wilson, Phys. Rev. D 7, 2911 (1973).

6. J. Zinn-Justin, Nucl. Phys. B 367 , 105 (1991).

7. M. Arik and M. HortacË su, J. Phys. G: Nucl. Phys. 9, L119 (1983).

8. M. HortacË su, Bull. Tech. Univ. Istanbul 47, 321 (1994); V. E. Rochev, J. Phys. A: Math.

Gen. 30, 3671 (1997); V. E. Rochev and P. A. Saponov, The four-fermion interaction in

D 5 2,3,4: A nonperturbativ e treatment, IHEP preprint, Moscow [hep-th/9710006 ].

9. P. A. M. Dirac, Lectures on Quantum Mechanics , Yeshiva University, New York (1964).

10. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961); 124, 246 (1961).

11. W. A. Bardeen, C. T. Hill, and M. Lindner, Phys. Rev. D 41, 1647 (1990).

12. A. Ali Khan, M. Gockeler, T. Horsley, P. E. L. Rakow, G. Schierholz, and H. Stuben,

Phys. Rev. D 51, 3751 (1995).


